Современные технологии обеспечения информационной безопасности (стр. 1 из 3)

Современные технологии защиты информации

Современные технологии обеспечения информационной безопасности (стр. 1 из 3)

Аннотация: Понятие об информационной безопасности. Доступность, целостность, конфиденциальность. Угрозы и одна из моделей их классификации. Методы защиты от угроз

Словосочетание «информационная безопасность» в разных контекстах может иметь различный смысл.

В Доктрине информационной безопасности Российской Федерации термин «информационная безопасность» используется в широком смысле.

Имеется в виду состояние защищенности национальных интересов в информационной сфере, определяемых совокупностью сбалансированных интересов личности, общества и государства.

В Законе РФ «Об участии в международном информационном обмене» информационная безопасность определяется аналогичным образом — как состояние защищенности информационной среды общества, обеспечивающее ее формирование, использование и развитие в интересах граждан, организаций, государства.

Для разработчика программного обеспечения наиболее важны вопросы хранения, обработки и передачи информации вне зависимости от того, на каком языке (русском или каком-либо ином) она закодирована, кто или что является ее источником и какое психологическое воздействие она оказывает на людей. Поэтому термин «информационная безопасность» будет использоваться в узком смысле, так, как это принято, например, в англоязычной литературе.

Под информационной безопасностью мы будем понимать защищенность информации и поддерживающей инфраструктуры от случайных или преднамеренных воздействий естественного или искусственного характера, которые могут нанести неприемлемый ущерб субъектам информационных отношений, в том числе владельцам и пользователям информации и поддерживающей инфраструктуры. (Чуть дальше поясним, что следует понимать под поддерживающей инфраструктурой.)

Защита информации — это комплекс мероприятий, направленных на обеспечение информационной безопасности.

Таким образом, правильный с методологической точки зрения подход к проблемам информационной безопасности начинается с выявления субъектов информационных отношений и интересов этих субъектов, связанных с использованием информационных систем (ИС). Угрозы информационной безопасности — это оборотная сторона использования информационных технологий.

Согласно определению, информационная безопасность зависит не только от компьютеров, но и от поддерживающей инфраструктуры, к которой можно отнести системы электро-, водо- и теплоснабжения, кондиционеры, средства коммуникаций и, конечно, обслуживающий персонал. Эта инфраструктура имеет самостоятельную ценность, но нас будет интересовать лишь то, как она влияет на выполнение информационной системой предписанных ей функций.

Обратим внимание, что в определении ИБ перед существительным «ущерб» стоит прилагательное «неприемлемый». Очевидно, застраховаться от всех видов ущерба невозможно, тем более невозможно сделать это экономически целесообразным способом, когда стоимость защитных средств и мероприятий не превышает размер ожидаемого ущерба.

Значит, с чем-то приходится мириться, и защищаться следует только от того, с чем смириться никак нельзя.

Иногда таким недопустимым ущербом является нанесение вреда здоровью людей или состоянию окружающей среды, но чаще порог неприемлемости имеет материальное (денежное) выражение, а целью защиты информации становится уменьшение размеров ущерба до допустимых значений.

Спектр интересов субъектов, связанных с использованием информационных систем, можно разделить на следующие категории: обеспечение доступности, целостности и конфиденциальности информационных ресурсов и поддерживающей инфраструктуры.

Доступность — это возможность за приемлемое время получить требуемую информационную услугу. Под целостностью подразумевается актуальность и непротиворечивость информации, ее защищенность от разрушения и несанкционированного изменения.

Наконец, конфиденциальность — это защита от несанкционированного доступа к информации.

Целостность можно подразделить на статическую (понимаемую как неизменность информационных объектов) и динамическую (относящуюся к корректному выполнению сложных действий (транзакций)). Средства контроля динамической целостности применяются, в частности, при анализе потока финансовых сообщений с целью выявления кражи, переупорядочения или дублирования отдельных сообщений.

Целостность оказывается важнейшим аспектом ИБ в тех случаях, когда информация служит «руководством к действию».

Рецептура лекарств, предписанные медицинские процедуры, набор и характеристики комплектующих изделий, ход технологического процесса — все это примеры информации, нарушение целостности которой может нанести вред здоровью людей.

Значительный ущерб может нанести искажение официальной информации, будь то текст закона или страница Web-сервера какой-либо правительственной организации.

Угроза — это потенциальная возможность определенным образом нарушить информационную безопасность.

Попытка реализации угрозы называется атакой, а тот, кто предпринимает такую попытку, — злоумышленником. Потенциальные злоумышленники называются источниками угрозы.

Чаще всего угроза является следствием наличия уязвимых мест в защите информационных систем (таких, например, как возможность доступа посторонних лиц к критически важному оборудованию или ошибки в программном обеспечении).

Промежуток времени от момента, когда появляется возможность использовать слабое место, и до момента, когда пробел ликвидируется, называется окном опасности, ассоциированным с данным уязвимым местом. Пока существует окно опасности, возможны успешные атаки на ИС.

Если речь идет об ошибках в ПО, то окно опасности «открывается» с появлением средств использования ошибки и ликвидируется при наложении заплат, ее исправляющих.

Для большинства уязвимых мест окно опасности существует сравнительно долго (несколько дней, иногда — недель), поскольку за это время должны произойти следующие события:

  • должно стать известно о средствах использования пробела в защите;
  • должны быть выпущены соответствующие заплаты;
  • заплаты должны быть установлены в защищаемой ИС.

Мы уже указывали, что новые уязвимые места и средства их использования появляются постоянно; это значит, во-первых, что почти всегда существуют окна опасности, и, во-вторых, что отслеживание таких окон должно производиться постоянно, а выпуск и наложение заплат — как можно более оперативно.

Отметим, что некоторые угрозы нельзя считать следствием каких-то ошибок или просчетов; они существуют в силу самой природы современных ИС. Например, угроза отключения электричества или выхода его параметров за допустимые границы существует в силу зависимости аппаратного обеспечения ИС от качественного электропитания.

Рассмотрим наиболее распространенные угрозы, которым подвержены современные информационные системы.

Иметь представление о возможных угрозах, а также об уязвимых местах, которые эти угрозы обычно эксплуатируют, необходимо для того, чтобы выбирать наиболее экономичные средства обеспечения безопасности.

Слишком много мифов существует в сфере информационных технологий (вспомним все ту же «Проблему 2000»), поэтому незнание в данном случае ведет к перерасходу средств и, что еще хуже, к концентрации ресурсов там, где они не особенно нужны, за счет ослабления действительно уязвимых направлений.

Подчеркнем, что само понятие «угроза» в разных ситуациях зачастую трактуется по-разному.

Например, для подчеркнуто открытой организации угроз конфиденциальности может просто не существовать — вся информация считается общедоступной; однако в большинстве случаев нелегальный доступ представляется серьезной опасностью.

Иными словами, угрозы, как и все в ИБ, зависят от интересов субъектов информационных отношений (и от того, какой ущерб является для них неприемлемым).

Угрозы можно классифицировать по нескольким критериям:

  • по аспекту информационной безопасности (доступность, целостность, конфиденциальность), против которого угрозы направлены в первую очередь;
  • по компонентам информационных систем, на которые угрозы нацелены (данные, программы, аппаратура, поддерживающая инфраструктура);
  • по способу осуществления (случайные/преднамеренные действия природного/техногенного характера);
  • по расположению источника угроз (внутри/вне рассматриваемой ИС).

В качестве основного критерия мы будем использовать первый (по аспекту ИБ), привлекая при необходимости остальные.

Самыми частыми и самыми опасными (с точки зрения размера ущерба) являются непреднамеренные ошибки штатных пользователей, операторов, системных администраторов и других лиц, обслуживающих информационные системы.

Иногда такие ошибки и являются собственно угрозами (неправильно введенные данные или ошибка в программе, вызвавшая крах системы), иногда они создают уязвимые места, которыми могут воспользоваться злоумышленники (таковы обычно ошибки администрирования). По некоторым данным, до 65% потерь — следствие непреднамеренных ошибок.

Основной способ борьбы с непреднамеренными ошибками — автоматизация и административный контроль.

Другие угрозы доступности классифицируем по компонентам ИС, на которые нацелены угрозы:

  • отказ пользователей;
  • внутренний отказ информационной системы;
  • отказ поддерживающей инфраструктуры.

Обычно применительно к пользователям рассматриваются следующие угрозы:

  • нежелание работать с информационной системой (чаще всего проявляется при необходимости осваивать новые возможности и при расхождении между запросами пользователей и фактическими возможностями и техническими характеристиками);
  • невозможность работать с системой в силу отсутствия соответствующей подготовки (недостаток общей компьютерной грамотности, неумение интерпретировать диагностические сообщения, неумение работать с документацией и т. п.);
  • невозможность работать с системой в силу отсутствия технической поддержки (неполнота документации, недостаток справочной информации и т. п.).

Основными источниками внутренних отказов являются:

  • отступление (случайное или умышленное) от установленных правил эксплуатации;
  • выход системы из штатного режима эксплуатации в силу случайных или преднамеренных действий пользователей или обслуживающего персонала (превышение расчетного числа запросов, чрезмерный объем обрабатываемой информации и т. п.);
  • ошибки при (пере)конфигурировании системы;
  • отказы программного и аппаратного обеспечения;
  • разрушение данных;
  • разрушение или повреждение аппаратуры.

По отношению к поддерживающей инфраструктуре обычно рассматриваются следующие угрозы:

  • нарушение работы (случайное или умышленное) систем связи, электропитания, водо- и/или теплоснабжения, кондиционирования;
  • разрушение или повреждение помещений;
  • невозможность или нежелание обслуживающего персонала и/или пользователей выполнять свои обязанности (гражданские беспорядки, аварии на транспорте, террористический акт или его угроза, забастовка и т. п.).

Источник: https://www.intuit.ru/studies/courses/955/285/lecture/7164

Информационная безопасность

Современные технологии обеспечения информационной безопасности (стр. 1 из 3)

  • Антивирусные программы — программы, которые борятся с компьютерными вирусами и возобновляют зараженные файлы.
  • Облачный антивирус (CloudAV) – одно из облачных решений информационной безопасности, что применяет легкое программное обеспечение агента на защищенном компьютере, выгружая большую часть анализа информации в инфраструктуру провайдера. CloudAV – это также решение для эффективного сканирования вирусов на приспособлениях с невысокой вычислительной мощностью для выполнения самих сканирований. Некоторые образцы облачных антивирусных программ – это Panda Cloud Antivirus, Crowdstrike, Cb Defense и Immunet.
  • DLP (Data Leak Prevention) решения – это защита от утечки информации. Предотвращение утечки данных (DLP) представляет собой набор технологий, направленных на предотвращение потери конфиденциальной информации, которая происходит на предприятиях по всему миру. Успешная реализация этой технологии требует значительной подготовки и тщательного технического обслуживания. Предприятия, желающие интегрировать и внедрять DLP, должны быть готовы к значительным усилиям, которые, если они будут выполнены правильно, могут значительно снизить риск для организации.
  • Криптографические системы – преобразование информации таким образом, что ее расшифровка становится возможной только с помощью определенных кодов или шифров (DES – Data Encryption Standard, AES – Advanced Encryption Standard). Криптография обеспечивает защиту информации и другими полезными приложениями, включая улучшенные методы проверки подлинности, дайджесты сообщений, цифровые подписи и зашифрованные сетевые коммуникации. Старые, менее безопасные приложения, например Telnet и протокол передачи файлов (FTP), медленно заменяются более безопасными приложениями, такими как Secure Shell (SSH), которые используют зашифрованные сетевые коммуникации. Беспроводная связь может быть зашифрована с использованием таких протоколов, как WPA/WPA2 или более старый (и менее безопасный) WEP. Проводные коммуникации (такие как ITU-T G.hn) защищены с использованием AES для шифрования и X.1035 для аутентификации и обмена ключами. Программные приложения, такие как GnuPG или PGP, могут применяться для шифрования информационных файлов и электронной почты.
  • Межсетевые экраны (брандмауэры или файрволы) – устройства контроля доступа в сеть, предназначенные для блокировки и фильтрации сетевого трафика. Брандмауэры обычно классифицируются как сетевые или хост-серверы. Сетевые брандмауэры на базе сети расположены на шлюзовых компьютерах LAN, WAN и интрасетях. Это либо программные устройства, работающие на аппаратных средствах общего назначения, либо аппаратные компьютерные устройства брандмауэра. Брандмауэры предлагают и другие функции для внутренней сети, которую они защищают, например, являются сервером DHCP или VPN для этой сети. Одним из лучших решений как для малых, так и для больших предприятий являются межсетевые экраны CheckPoint.
  • VPN (Virtual Private Network). Виртуальная частная сеть (VPN) дает возможность определить и использовать для передачи и получения информации частную сеть в рамках общедоступной сети. Таким образом, приложения, работающие по VPN, являются надежно защищенными. VPN дает возможность подключиться к внутренней сети на расстоянии. С помощью VPN можно создать общую сеть для территориально отдаленных друг от друга предприятий. Что касается отдельных пользователей сети – они также имеют свои преимущества использования VPN, так как могут защищать собственные действия с помощью VPN, а также избегать территориальные ограничения и использовать прокси-серверы, чтобы скрыть свое местоположение.
  • Proxy-server (Прокси-сервер) – это определенный компьютер или компьютерная программа, которая является связывающим звеном между двумя устройствам, например, такими как компьютер и другой сервер. Прокси-сервер можно установить на одном компьютере вместе с сервером брандмауэра, или же на другом сервере. Плюсы прокси-сервера в том, что его кэш может служить для всех пользователей. Интернет-сайты, которые являются наиболее часто запрашиваемыми, чаще всего находятся в кэше прокси, что несомненно удобно для пользователя. Фиксирование своих взаимодействий прокси-сервером служит полезной функцией для исправления неполадок.
  • Системы мониторинга и управления информационной безопасностью, SIEM. Чтобы выявлять и реагировать на возникающие угрозы информационной безопасности, используется решение SIEM, которое выполняет сбор и анализ событий из разных источников, таких как межсетевые экраны, антивирусы, IPS, оперативные системы и т.п. Благодаря системе SIEM у компаний появляется возможность централизованно хранить журналы событий и коррелировать их, определяя отклонения, потенциальные угрозы, сбои в работе ИТ-инфраструктуры, кибератаки и т.д.

Отдельное внимание стоит уделять управлению мобильными устройствами на предприятии, так как многие сотрудники часто используют личные смартфоны, планшеты и ноутбуки в корпоративных целях.

Внедрение специальных решений, таких как VMware AirWatch, IBM MaaS360, Blackberry Enterprise Mobility Suite, VMware Workspace One помогут лучше контролировать мобильные устройства сотрудников и защитить данные компании.

Источник: https://pirit.biz/reshenija/informacionnaja-bezopasnost

Современные технологии обеспечения информационной безопасности (стр. 1 из 3)

Современные технологии обеспечения информационной безопасности (стр. 1 из 3)

Со стремительным развитием Интернет-технологий многие ведущие зарубежные фирмы, специализирующиеся в сфере информационных технологий, ежегодно вкладывают огромные средства в создание соответствующего инструментария интеллектуальной обработки текстовой, речевой и графической информации.

В первую очередь, это связано с тем, что на применении названных интеллектуальных технологий обработки данных базируются перспективные концепции управления силами и средствами в сложной обстановке.

Сегодня на основе их активного использования предполагается поддерживать политические, экономические и иные решения.

На их базе строятся и сложные биометрические системы идентификации и верификации как в интересах государственных и правоохранительных структур, так и для решения задач обеспечения безопасности коммерческих организаций.

Конечно, интеллектуализация обработки данных в связи с бурным развитием Интернет-технологий начинает приобретать все большее значение для эффективного решения двух основополагающих проблем.

С одной стороны, это получение в реальном масштабе времени многоаспектной и объективной информации из Интернет, других доступных информационных и телекоммуникационных систем о состоянии, направлении развития и уровне угроз тех или иных процессов в мировом масштабе, обществе и его отдельных этно- экономических образованиях. Очевидно, что синтез знаний, отраженных в тех или иных разрозненных и, на первый взгляд, не связанных единой логикой данных, осуществленный на основе систем их интеллектуальной обработки, дает абсолютно новое интегративное качество, позволяющее предугадать, а значит — и предупредить негативное развитие тех или иных процессов и явлений. Таким образом, речь идет о создании на базе названных технологий, интеллектуальной среды моделирования безопасного развития систем и процессов.

С другой стороны, применение интеллектуальных технологий обработки данных дает возможность на порядок повысить безопасность функционирования различных компьютеризированных систем, в том числе связанных с принятием стратегических решений, отвечающих за безопасное развитие технологических процессов, используемых в системах управления войсками и оружием. Понятно, что на смену наиболее распространенным PIN и подобным технологиям, весьма уязвимым с точки зрения безопасности компьютеризированных систем, должны придти и уже приходят более продвинутые и надежные технологические решения, связанные, в частности, с биометрикой. Не могу не сослаться в этой связи на утвержденную 9 сентября 2000 года российским Президентом «Доктрину информационной безопасности Российской Федерации», где прямо говорится о необходимости создания новых средств и систем предотвращения несанкционированного доступа к обрабатываемой информации и специальных воздействий.

Из сказанного хотелось бы сделать вывод: в условиях быстроменяющейся международной и внутриполитической обстановки в России, характеризующейся выраженным дефицитом времени на принятие стратегических решений, связанных с глубоким анализом и прогнозированием развития ситуации в различных сферах жизнедеятельности, ориентация на интеллектуальные автоматизированные системы подготовки решений и защиты информации применительно к нашей стране выступает в качестве первоочередной задачи.

Перспективные технологии защиты информации

Выступивший на конференции заместитель начальника Главного управления ФАПСИ д.ф-м. Н.

А Кузьмин в своем докладе о перспективных технологиях обеспечения информационной безопасности подчеркнул, что в современном обществе уровень решения проблем защиты информации, наряду с прогрессом компьютерных технологий, стал фактором, определяющим скорость и эффективность внедрения информационных технологий во все сферы жизни.

Более того, на его взгляд, от качества применяемых технологий защиты информации зависит сейчас не только сохранность в секрете конфиденциальных сведений, но и вообще существование конкретных информационных и телекоммуникационных сервисов, услуг и приложений.

В настоящее время в России и за рубежом, как отметил докладчик, активно развиваются и внедряются криптографические компьютерные технологии, направленные на обеспечение работоспособности таких комплексных и масштабных сетевых приложений, как электронный банк (e-banking), электрон ная торговля (e-commerce) и электронный бизнес (e-business). По вполне понятным причинам среди этих технологий определяющую роль играют криптографические протоколы аутентификации, распределения ключей и системы электронной цифровой подписи (ЭЦП).

А Кузьмин считает, что важной проблемой здесь является обеспечение эффективного отображения арсенала существующих и новых перспективных криптографических решений (алгоритмов, протоколов, ключевых систем) на все расширяющееся множество прикладных программных продуктов, сетевых операционных систем и аппаратных платформ, на которых базируются упомянутые выше информационные системы и ресурсы. В этой связи, по словам докладчика, на повестке дня стоят и поэтапно решаются (в том числе под руководством и с участием ФАПСИ) задачи разработки, совершенствования и внедрения следующих важнейших технологий защиты информации:

· новых стандартов ЭЦП;

· масштабируемой системы электронных цифровых сертификатов с использованием центров доверия;

· криптографически защищенных корпоративных (виртуальных) компьютерных сетей и средств межсетевого экранирования;

· средств антивирусной защиты и средств защиты от несанкционированного доступа (НСД) к информации для неоднородных распределенных информационных систем;

· мониторинга и аудита безопасности сетевых информационных ресурсов;

· защищенных программно-аппаратных средств для IP-телефонии;

· средств защиты сетей мобильной связи и персональных коммуникаций;

· средств биометрической идентификации, а также персональных СКЗИ и средств аутентификации на базе интеллектуальных карт и других малогабаритных технических средств обработки информации.

На взгляд докладчика, развитие указанных перспективных технологий защиты информации требует, с одной стороны, применения новых математических и криптографических решений (например, криптоалгоритмов на основе эллиптических кривых, методов квантовой криптографии, фрактальных алгоритмов сжатия данных), а, с другой стороны, существенно зависит от прогресса в уровне развития отечественных микропроцессорных, алгоритмических, программистских и других смежных технических решений.

Перспективные технологии защиты информации должны синтезировать только высокотехнологические разработки интеллектуальных систем анализа информации, интегрирующих передовые достижения лингвистического анализа, речевых технологий, визуализации данных, программно-технических решений. Именно в этих сферах деятельности сосредоточены лучшие силы программистов и специалистов по компьютерным технологиям и информационной безопасности. Россия здесь не является исключением.

Состояние российских исследований в области интеллектуальных систем анализа и защиты информации, говоря в целом, нельзя охарактеризовать даже как удовлетворительное.

Однако, парадоксально, но факт — несмотря на катастрофическое состояние науки и сферы производства, нехватку средств на разработку и исследования, приоритет на многие передовые технологические решения в этой сфере принадлежит российским специалистам.

Объяснение этого феномена весьма просто. Если говорить коротко, оно связано с двумя позитивными явлениями:

· – в наследство новой России, с ее разрушенной экономикой и развалившейся научно-производственной базой досталась довольно широкая прослойка высококлассных математиков и программистов, по российской же традиции в условиях хронического безденежья продолживших свои изыскания.

· – в предчувствии резкого изменения конъюнктуры рынка в сторону высокотехнологичных интеллектуальных средств и систем анализа и защиты информации многие фирмы, в основном — коммерческие осуществляли финансовые вливания в их исследования и разработку. Здесь нужно заметить, что предчувствие основывалось на вполне объективной информации, исходившей от коллег — российских специалистов, эмигрировавших за рубеж и работающих по контрактам с зарубежными фирмами.

Перспективы применения биометрических технологий идентификации

О перспективности биометрических технологий идентификации, относящихся к интеллектуальным технологиям, говорит и недавний шаг Microsoft, лицензировавшей биометрическую технологию и программную систему биометрической идентификации пользователей ее разработок. В биотехнологических разработках уже проявили себя компании Compaq, Identix, Veridicom, KeyTronic, Miros, Visionics и др.

Ведущий специалист из Института автоматизации проектирования РАН д.ф.-м.н А.С.Глазунов отметил, что следующую закономерность в затратах на построение биометрических систем идентификации личности.

Если выстроить эти системы в ряд с точки зрения затрат, то получится примерно следующая последовательность: голос — сетчатка — радужная оболочка — палец — подпись — рука — лицо. Он также отметил, что использование биометрических систем в полной мере, несмотря на возрастающий спрос, пока достаточно ограничено.

Главные причины лежит в относительной сложности интеграции подобных систем с персональным компьютером, подчас неудобстве использования, сравнительно низкой надежности и эффективности.

Существуют и проблемы законодательного характера. Об их остроте говорит хотя бы тот факт, что, например, в США уже давно дискутируется вопрос о применении биометрических технологий, в том числе понижения вероятности введения запретительных законов, резко ограничивающих области их использования.

Следует также отметить, что эффективность биометрических систем еще недостаточно велика по ряду причин. Главный вопрос здесь — как будут вести себя биометрические системы идентификации при размерах баз данных, когда число пользователей будет превышать миллион и более.

Источник: https://smekni.com/a/311171/sovremennye-tekhnologii-obespecheniya-informatsionnoy-bezopasnosti/

Pravo-consut
Добавить комментарий